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Abstract 

Alan Powell has made significant contributions to the understanding of many 
aeroacoustic problems, in particular, the problems of broadband noise from jets and 
boundary layers.  In this paper, some analytic results are presented for the calculation of 
the correlation function of the broadband noise radiated from a wing, a propeller, and a 
jet in uniform forward motion.  It is shown that, when the observer (or microphone) 
motion is suitably chosen, the geometric terms of the radiation formula become time 
independent.  The time independence of these terms leads to a significant simplification 
of the statistical analysis of the radiated noise, even when the near field terms are 
included.  For a wing in forward motion, if the observer is in the moving reference frame, 
then the correlation function of the near and far field noise can be related to a space-time 
cross-correlation function of the pressure on the wing surface.  A similar result holds for 
a propeller in forward flight if the observer is in a reference frame that is attached to the 
propeller and rotates at the shaft speed.  For a jet in motion, it is shown that the 
correlation function of the radiated noise can be related to the space-time cross-
correlation of the Lighthill stress tensor in the jet. Exact analytical results are derived for 
all three cases.  For the cases under present consideration, the inclusion of the near field 
terms does not introduce additional complexity, as compared to existing formulations that 
are limited to the far field.   
 
 
 
1.  Introduction 

Alan Powell’s career in acoustics spans a period of more than fifty years.  He has 
made important contributions to the twentieth century’s major areas of acoustic research, 
including random vibration, edge tones, jet noise and boundary layer noise.  Alan Powell 
was one of the first researchers to recognize the importance of trailing edge noise [1].  
Moreover, he has kept up admirably with developments in all of these areas.  His 
publications convey a deep understanding of the physics of acoustic phenomena.  He 
writes clearly and explains ideas lucidly with a masterful application of analytical 
techniques.  It is with great pleasure that the authors dedicate this paper to Alan Powell 
for his lifetime achievements.  He is the Grand Teacher to us all. 

There is a long history of research in broadband noise radiation from jets and surfaces 
(see the references in many chapters of [2]).  Today’s aeronautical problems that require 
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broadband noise prediction are found to present some of the most challenging 
aeroacoustic problems to date.  It is fair to say that the acoustic analogy has played a 
major role in the analysis of such problems.  Much insight and understanding have 
resulted from such analysis [3, 4, 5, 6].  However, the lack of sufficient measured data, as 
well as the complexity of the problems themselves, has caused researchers to make 
assumptions that simplify their analyses and render approximate formulations.  Two of 
the most common simplifying assumptions are that of an observer well into the far field 
and a source occurring at low Mach number.  The analysis presented herein will 
demonstrate a method by which both of these assumptions can be relaxed.  Furthermore, 
the authors feel that there is a need to remove some or all of the approximations that are 
commonly made in broadband noise prediction.   

In order to predict a random signal that results from a broadband source, it is logical 
to develop an acoustic formulation that is based on statistical analysis.  Previous authors 
have derived important results with the use of statistical analysis, e.g., [2, 3, 4, 5, 6].  
Furthermore, because of the current interest in airframe noise, recent reports on 
statistically based research are appearing in the literature, e.g., [7].  To the present 
authors’ knowledge, there are no published results that are similar to those derived 
herein.   

In the present paper, some analytic results are presented for the calculation of 
broadband noise radiation from wings, propellers and jets in uniform rectilinear motion.  
The objective is to obtain exact formulations for such calculations, with the assumption 
that some statistical properties of the flow are known on the surface of the wing or 
propeller blade, or within the volume of the jet.  Because exact results are desired, any 
near field terms that occur in the derivation are included.  No assumption is made on the 
source speed, other than a restriction to subsonic motion.  It is shown that the inclusion of 
the near field terms does not add more complexity to the derivation of the final 
formulations.  It is also important to realize that the inclusion of the near field terms does 
not further complicate numerical algorithms that are used for noise calculations.   

The following section describes the analytical approach to the three formulations 
derived in this work.  Each derivation begins with an appropriately chosen form of 
Lighthill’s acoustic analogy [8], with its usual solution, i.e., with respect to an observer 
(or microphone) that is fixed with respect to the medium at rest.  A suitably chosen 
observer motion then results in the time independence of all the geometric terms in the 
radiation formula.  Such a result greatly simplifies a statistical analysis of the radiated 
noise, even when the near field terms are retained.  The autocorrelation of the acoustic 
pressure can then be directly related to the cross-correlation of the surface pressure in a 
simple form that can be interpreted physically. 

In Section 3, the analytical method described above is first applied to a wing in 
uniform rectilinear subsonic motion with fluctuating surface pressure.  For an observer 
fixed to the undisturbed medium, the acoustic pressure is given by the solution of the 
loading term of the Ffowcs Williams-Hawkings (FW-H) equation [9].  The closed form 
solution to this equation is available and is the foundation for the analysis.  If the 
observer is relocated to a frame of reference that moves with the wing, then many of the 
terms in the solution become time independent, yielding a simpler result that avails itself 
to a statistical formulation.  A correlation function of the acoustic pressure is then derived 
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that is valid in the near and far fields.  The resulting exact formulation can be simplified 
by making various geometric or physical approximations for the derivation of other 
useful results. 

In Section 4, the method by which the correlation function is derived in Section 3 is 
extended to a propeller in uniform forward motion by locating the observer in a reference 
frame that rotates at the shaft speed of a propeller.  The time independent functions 
appearing in the acoustic pressure correlation function for a propeller can be computed 
numerically, and not analytically as in the case of a wing in motion. 

The analysis begins similarly for a jet in forward flight in Section 5, with an exact 
result for the acoustic pressure at an observer position fixed to the undisturbed medium.  
The transfer of the observer to a frame moving with the jet results in many time 
independent terms.  The acoustic pressure correlation function is found by the same 
procedure that is used for a wing or a propeller in motion.  Some of the consequences of 
the derived results are discussed. 

 
 
2.  Analytical Approach 

The time domain approach used in the present work is based on Lighthill’s acoustic 
analogy [8].  The governing equations are always solved in a reference frame that is fixed 
to the undisturbed medium.  The space-time variables ),( tx

�
 are associated with this fixed 

reference frame.  In addition, the analysis requires an observer in a moving frame of 
reference with associated space-time variables ),( 0 tx

�
.  Spatial locations within these two 

reference frames are related by the coordinate transformation ),( 0 txxx
��� = .  The acoustic 

pressure in the frame fixed to the undisturbed medium is denoted by ),( tp x
�′ .  In the 

moving frame, the acoustic pressure is ),(~
0 tp x
�′ .  Note that ),( tp x

�′  and ),(~
0 tp x
�′  are 

represented by different analytical expressions and, therefore, the present authors chose 
to use different symbols for these two functions. 

All of the present derivations begin with an equation of the form 

� 

2 ),(),( tQtp xx
�� =′                                                     (1) 

where � 

2 represents the linear wave operator, and ),( tQ x
�

 is the appropriate source 
distribution for a given problem.  Eq. (1) represents the propagation of sound to an 
observer in the reference frame that is fixed to the undisturbed medium.  An analytic 
expression is now desired for ),(~

0 tp x
�′ , the acoustic pressure perceived by an observer in 

a moving frame of reference. 

Fig. 1   schematically shows two paths to the desired solution in the moving reference 
frame.  Taking the first path, along the solid line, leads immediately to an equation of the 
form 

L ),(
~

),(~
00 tQtp xx
�� =′                                                  (2) 
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where L is a complicated wave-like operator, and ),(
~

tQ x
�

is the associated source term in 
the moving reference frame.  In most cases, the solution of Eq. (1) is more easily 
obtained than the solution of Eq. (2) because of the simplicity of the free-space Green’s 
function for the wave operator �  

2.  Therefore, the second solution path is chosen, as 
shown by the dashed line in Fig. 1.  For the problems under present consideration, the 
solution ),( tp x

�′  in the fixed reference frame is readily available.  The solution ),(~
0 tp x
�′  

in the moving reference frame is then obtained by applying a suitable coordinate 
transformation to the fixed-frame solution, i.e., 

)),,((),(~
00 ttptp xxx
��� ′=′                                              (3) 

For an appropriately chosen coordinate transformation, all of the solution’s geometric 
terms in the moving reference frame become time independent, thus facilitating the 
subsequent statistical analysis.  The required transformation ),( 0 txxx

��� =  is easily 

specified for the cases under consideration in the present paper. 
 
 
3.  A Wing in Uniform Rectilinear Subsonic Motion 

As early as 1954, Powell studied boundary layer noise from a rigid boundary as a 
distribution of fluctuating dipoles [10].  In 1960, he studied this problem further [11], 
extending, to some extent, the work of Curle [12].  In this section, the noise from random 
surface pressure fluctuations on a wing in motion is considered.  Surface pressure 
fluctuations are caused either by the interaction of the wing with atmospheric turbulence 

 

Fig. 1.  Solution Diagram.  The coordinate transformation can be 
incorporated before solving the equation (solid line) or after the solution is 
obtained (dashed line). 
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or by turbulent fluctuations in the boundary layer. The acoustic pressure ),( tp x
�′ can be 

calculated from the solution of the FW-H equation, retaining only the loading term: 

� 

2 [ ])( fpn
x

p i
i

δ
∂
∂−=′ (4) 

Here, � 

2 denotes the linear wave operator with constant sound speed c, p is the 
fluctuating pressure on the wing surface, and )( ⋅δ  is the Dirac delta function.  The wing 
surface is defined by the function ),( tf x

�
 such that 0=f  on the surface of the wing and 

0>f  in the region exterior to the surface.  The notation in  represents the i-th 

component of the outward unit surface normal f∇=
��

n .  In this equation and henceforth, 
unless otherwise noted, the summation convention is assumed for repeated indices. 

The solution of Eq. (4) for a wing in uniform motion is [13, 14]: 
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The flight velocity vector TV ]0,0,[=V
�

 is directed along the 1x -axis.  The observer 
space-time variables are denoted ),( tx

�
 in the reference frame fixed to the medium at rest.  

However, it is important to remember that the surface integration is performed with 
respect to the spatial variables in the moving reference frame.  The variable p�  is the time 
rate of change of the fluctuating surface pressure p as measured by a transducer on the 
wing surface, and ir̂  is a component of the unit radiation vector r/ˆ rr

�= .  The quantity 

rM  is the Mach number in the radiation direction, defined by rM ˆ⋅=
�

rM , where 

c/VM
��

=  is the Mach number vector based on the forward velocity of the wing.  The 
subscript “ret” denotes evaluation of the bracketed terms at retarded time crt /− .  Note 
that the far field radiation is governed by the time rate of fluctuations of the surface 
pressure. 

A frame of reference that moves with the wing is now considered (See Fig. 2).  Let 
this moving reference frame coincide with the frame fixed to the undisturbed medium at 
the time 0=t .  To find the acoustic pressure at the observer position 0x

�
 in the moving 

frame, x
�

 must be replaced with tVx
�� +0  in Eq. (5).  If an arbitrary source point on the 

wing, in the moving frame of reference, is described by the position vector �
�

, then the 
following two functions are time independent and can be written in terms of the variables 

0x
�

 and �
�

: 
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See [15, Sec. 5] for details of the analytic expressions for the two functions in Eq. (6) in 
terms of the variables 0x

�
 and �

�
.  The time independence of these two functions greatly 

simplifies the statistical analysis of the acoustic pressure.  Note that the emission distance 
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Fig. 2.  The reference frames used in the analysis of a wing or a jet in 
uniform motion.  The x

�
-frame is fixed to the medium.  The 0x

�
-frame 

moves with the wing or the jet at speed V along the 1x -axis.  The leading 

edge of the wing faces in the positive 1x  direction.  The line segment 00 ′
has length Vt, �

�
 is the source position and 0x

�
 is the observer position in 

the moving reference frame.  For a propeller, the 0x
�

-frame is attached to 

the propeller blade, it rotates around the 1x -axis, and moves forward with 
speed V along the same axis. 

 

retrr ][=∗ , as well as other geometric variables such as ˆ r i , are also time independent and 

can be expressed as a function of 0x
�

 and �
�

, as discussed in [15, Sec. 5].  Fig. 3 shows 

the geometry associated with radiation from a source at position �
�

 in the moving frame.  
The pictured construction shows that this geometry is independent of time.  The triangle 
ABC, sometimes called the Garrick triangle in the literature of linear unsteady 
aerodynamics, is seen by an observer positioned in the stationary frame of reference.  The 
shape and the dimensions of this triangle do not change with time. 

Therefore, Eq. (5) can be rewritten with respect to the moving reference frame in the 
following simplified form: 

�
=

∗∗ −+−=

+′≡′

0

0201

00

][ )/,(),()/,(),(

),(),(~

f

dScrtpFcrtpF

ttptp

��x��x

Vxx

����
�

��

���

(7) 

Using the notation ⋅⋅  to denote an ensemble average in time, the autocorrelation of the 

acoustic pressure in Eq. (7) can be written: 
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where the prime notation on the quantities 1F , 2F , and ∗r  denotes the replacement of the 
variable �

�
 in these quantities with �′� .  

Now, define a surface pressure cross-correlation function by 

),(),( τ+′≡ tptpR pp ��
��

(9) 

Using the ergodic hypothesis, the variable dependence of the cross-correlation function in 
Eq. (9) can be expressed: 

)/)(,()/,()/,( crrRcrtpcrtpR pppp
∗∗∗∗ ′−+′=′−+′−≡ ττ �,���

����
(10) 

Let )(�
�

A  denote the correlation area as a function of �
�

.  Then the acoustic-pressure 
correlation function in the moving reference frame can be written: 


�
��∆τ

ψ

�
∆τ�
�����

�����
�
�

�� 

−
η

�

 
 

Fig. 3.  The geometry of radiation as seen by an observer fixed to the 
medium at rest.  A and B are the source and observer positions at a given 
observer time t.  C is the emission position of the source, and τ∆= cCB , 
where τ∆  is the signal propagation time from C to B.  Application of the 
law of cosines to triangle ABC yields ∗r  as a function of ),( 0 �x

��
, 

independent of time, as are rM  and ir̂ .  Note that the symbol τ  denotes 
source time in this figure, and not delay time. 
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where τ∂  and ττ∂  denote, respectively, the first and second partial derivatives with 

respect to delay time τ .  Eq. (11) is the main result of this section and it is exact for the 
calculation of both near and far field loading noise for a surface in uniform rectilinear 
motion. 

A few remarks are in order at this point.  Note that the cross-correlation function ppR  

in Eq. (9) can be obtained from measurements by transducers on the wing surface.  
Furthermore, although the assumption of ergodicity is reasonable, one cannot further 
assume that the dependence of ppR  on the position variables �

�
 and �′�  can be generally 

expressed in terms of the separation vector �� ′− ��
.  Finally, it is interesting that, in the far 

field, Eq. (11) takes the following simple form: 

��

�

xx ��

�

��
dSdSRFFtptp pp

Af

′
=

∂′=+′′ �� τττ 11

)(0

00 ),(~),(~ (12) 

However, because the functions 1F  and 2F  can easily be computed numerically, the 
restriction to the far field is not necessary, but merely a convenience for appropriate 
problems.  If qualitative results are desired, e.g., a Mach number dependence rule for an 
observer in the far field, then further simplifying assumptions can be made in the above 
equation.  It is clear from Eq. (11) that, for a realistic problem when the observer is in the 
near field, a Mach number dependence rule that is derived for a simple dipole in motion 
cannot be expected to hold.  This is because of the complicated dependence of the 
functions in Eq. (11) on 0x

�
 and �

�
.  However, numerical evaluation of the integral on the 

right-hand of Eq. (11) is quite feasible and can give a good picture of the near field 
behavior of the broadband noise from a wing in motion.  

By analyzing experimental data, analytical models can be deduced for the surface 
pressure cross-correlation function on a wing.  As in jet noise analysis, such models are 
very important.  If available, the experimentally measured surface pressure cross-
correlation function can be directly used in a noise calculation.  It is interesting to note 
that the numerical evaluation of the correlation function of the acoustic pressure in the 
near field is no more difficult than in the far field computation.  
 
 
4.  A Propeller in Uniform Forward Flight 

In order to include the effects of rotational motion, the solution of Eq. (4) becomes 
slightly more complicated than the solution for the wing in Eq. (5).  For a propeller with 
forward flight velocity V

�
, the acoustic pressure at an observer location x

�
 at time t is 

given by the following expression [13, 14]: 
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where iM�  is the i-th component of the local surface acceleration vector τ∂∂ /v
�

 divided 

by the sound speed c.  The reader is again reminded that the surface integration is 
performed with respect to the variable �

�
 in the moving reference frame.  The objective in 

this section is to derive a result similar to Eq. (11) for the more complicated case of a 
rotating propeller in forward motion. 

Note that the simplicity of Eq. (11) depends on the time independence of 1F , 2F , and 
∗r  in Eq. (7).  It is natural to ask whether there exists a straightforward extension of Eq. 

(7) to rotational motion.  If the observer is placed in a rotational reference frame that is 
attacheded to the propeller blade, can time independent functions 1F , 2F , and ∗r  again be 
determined?  The answer to this question is affirmative, by the following reasoning. 

Let �
�

 denote the angular velocity vector of the propeller and V
�

 its uniform flight 
velocity.  In a similar fashion to the wing problem above, assume that a reference frame 
that rotates with the propeller and a reference frame that is fixed to the medium at rest 
coincide at the time 0=t .  Let 0x

�
 denote the observer position in the rotating reference 

frame and �
�

 be the position vector of a point on the propeller blade surface in the same 
reference frame.  Note that the relative position of these two vectors is the same for all 
observer time t.  Within this framework, define the following two functions:† 
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            (14) 

It remains to show that the two functions in Eq. (14), as well as ∗r , are independent of 
the observer time t.  An analogous result to Eq. (7) will then immediately follow. 

The time independence of 1F , 2F , and ∗r  can be demonstrated in the following way.  
Referring to Fig. 4, at a given observer time t, freeze the position of the observer in the 
reference frame fixed to the medium at rest.  The contribution to the acoustic pressure at 
the observer position 0x

�
 from a source position �

�
 on the propeller blade surface requires 

the evaluation of the location of the source position at the retarded time crt /∗− .  The 
required location of �

�
 can be visualized by letting the point �

�
 trace its history backward 

                                                 
† Eq. (14), as shown here, has been corrected from that printed on page 343 in International Journal of 

Aeroacoustics, Vol. 2, No. 3 & 4, 2003.  An erratum has been submitted to the journal. 
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in time on a helix (See Fig. 4).  The emission point of this source lies on this helical path 
and is always in the same physical location relative to the observer position, independent 
of the observer time t.  In this discussion, the observer is positioned in the frame fixed to 
the medium and observing the propagation phenomenon. 

Using Eqs. (13) and (14) within the aforementioned framework of a rotating reference 
frame, the acoustic pressure at 0x

�
 can be expressed in the following form: 

�
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where 1F  and 2F  are defined in Eq. (14).  Note that, for a rotating propeller, the functions 

1F , 2F , and ∗r , as well as other geometric quantities, cannot be determined in closed 
form, even if there is no forward flight.  However, these functions can easily be 
computed.   
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Fig. 4.  The geometry of radiation from a source on a propeller blade, as 
seen by an observer fixed to the medium.  A and B are the source and 
observer positions at a given observer time t.  C is the emission position of 
the source, and τ∆= cCB , where τ∆  is the signal propagation time from 
C to B.  C is found from the relation =CA (helical speed) τ∆× =  (helical 
Mach number) ∗× r , where CA  is the distance along the helix from C to 
A.  This shows that ∗r , rM , and ir̂  are functions of ),( 0 �x

��
.  Note that the 

symbol τ  denotes source time in this figure, and not delay time. 
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Thus, it has been established that the right-hand sides of Eqs. (15) and (7) are 
identical in form, with time independent functions 1F , 2F , and ∗r .  Therefore, Eq. (11) is 
also valid for the acoustic-pressure correlation function at an observer in a rotating 
reference frame that is attached to the propeller blade, with the understanding that 1F  and 

2F  are given by Eq. (14).  Moreover, all of the comments following Eq. (11) for a wing 
in uniform motion also apply to a propeller in forward flight.  

The measurement of sound by a rotating microphone presents some experimental 
difficulties, such as the presence of wind noise.  However, it is possible to use advanced 
signal analysis techniques to overcome these difficulties.  The results in this section are 
presented to bring attention to the simplicity of Eq. (11) for a rotating microphone. 
 
 
5.  A Jet In Uniform Rectilinear Subsonic Motion 

A jet in uniform rectilinear subsonic motion is now considered.  Lighthill’s [8] jet 
noise equation is: 
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where Tij  is the Lighthill stress tensor.  The jet is assumed free of shocks, the 

implications of which will be discussed below.  Consider a frame of reference that moves 
with forward flight of the jet and moves with a uniform rectilinear subsonic velocity V

�
.  

In [16], an exact solution of Eq. (16) is derived that involves only the observer time 
derivatives and includes the near field terms: 
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Here, Trr = Tij
ˆ r iˆ r j  and rM

~
 is the Mach number in the direction of noise radiation based on 

the forward velocity V
�

.  The variable V  represents the turbulent volume in the jet while 
�
�

d  denotes a volume element.  It is important to note that the observer time derivatives 
here are performed while keeping the observer location x

�
 fixed.  In fact, it is re-

emphasized here that the observer in Eq. (17) is described in a reference frame that is 
fixed to the undisturbed medium.  Furthermore, all the velocities in the Lighthill stress 
tensor terms are evaluated relative to the frame fixed to the undisturbed medium.  
However, the integrals in Eq. (14) are performed in the moving reference frame.  These 
facts can all be inferred from the derivation of the above equation. 

Brentner [17] has derived an equivalent expression to Eq. (17) when the time 
derivatives are taken inside the integrals: 
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In Eq. (18), a dot over a symbol denotes a source time derivative, keeping the variable �
�

 
fixed, i.e. the time rate of change of the parameter as measured in the moving frame.  The 

tilde notation M
~

 represents a Mach number based on the forward velocity V
�

.  The 
above equation, specialized to the problem of rotating blade noise, has been used 
successfully by Brentner [17] to compute high-speed helicopter rotor blade noise. 

In a manner similar to the previous two sections, if the observer is in the moving 
frame at the position 0x

�
, then many of the terms in Eq. (18) are time independent.  The 

acoustic pressure in the moving frame is, therefore: 

),(),(~
00 ttptp Vxx

��� +′≡′ (19) 
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where three time independent tensor functions are defined as follows: 
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Here, δij  is the Kronecker delta.  As in the previous two sections, retrr ][* =  is also time 

independent.  

The velocity terms in the Reynolds stress term of the Lighthill quadrupole tensor are 
now considered.  Let ui  and Ui  denote the velocity components of the jet in the moving 
and the stationary frames, respectively.  Then, the terms involving the velocity product in 
the Reynolds stress tensor in all the above equations must be jiUUρ , as explained 

above.  In terms of the velocity components in the moving frame, using the relation 
Ui = ui +Vδ1i , the velocity terms of the Reynolds stress are: 
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Thus, the acoustic pressure in the moving frame can now be expressed in terms of 
quantities that can be measured in the moving frame of reference.  Furthermore, the only 
time dependent quantities in Eq. (19) are the Lighthill stress tensor term and its time 
derivatives. 

The analysis for the wing and the propeller in forward motion is now repeated.  The 
autocorrelation function of the acoustic pressure can be expressed as follows: 
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where the variable �
�

 is replaced by the variable �
�′  in the primed quantities.  Now, define 

the cross-correlation function of the Lighthill stress tensor by: 

),(),(),,( ττ +′=′ tTtTR lkijijkl ����
����

(23) 

Then, if )(C �
�

V  is the correlation volume, Eq. (22) can be written as: 
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where τ∂  , ττ∂ , etc., denote partial derivatives with respect to delay time τ .  For far field 

radiation with the observer in the moving frame, the autocorrelation of the acoustic 
pressure assumes the following simple form: 

����xx
������
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ddcrcrRFFtptp ijklklij ′′−+′∂′=+′′ ∗∗�� ][ )//,,(),(~),(~

)(

ττ ττττ

η
C

VV

(25) 

Therefore, to calculate the autocorrelation of the acoustic pressure in the moving 
frame, the cross-correlation function of the Lighthill stress tensor ),,( τ�� ′��

ijklR  must be 

modeled, based on experimental observations.  In general, such modeling is a difficult 
task.  However, the mathematical framework given here can lead to the development of 
analytical models that can be used to make predictions to compare with acoustic 
measurements [18]. 

Note that, although Eq. (17) is valid for a jet with shocks, Eqs. (18) and (19) are only 
valid for shock-free jets.  The reason for this restriction is that the observer time 
derivatives in Eq. (17) must be treated as generalized derivatives in order to interchange 
those derivatives with the integration [19, 20].  When the generalized derivatives are 
brought inside the integral, any shock discontinuity in a jet will produce additional terms 
that are not included in the present jet noise analysis [21].  The analysis of jets with 
imbedded shocks is more complicated than what is presented here. 

Finally, note that the results presented in this section are only a preliminary statistical 
analysis for jet noise.  The works of Ribner [22], Ffowcs Williams [23], and others can be 
used in modeling the cross-correlation terms in Eq. (24). 

 
 

Concluding Remarks 

Some exact analytical results have been derived for the prediction of broadband noise 
radiated from a wing, a propeller, and a jet in uniform subsonic motion.  For an observer 
in an appropriate frame of reference, the correlation function of the acoustic pressure can 
be directly related to the space-time cross-correlation of either, the surface pressure on a 
wing or propeller blade, or the cross-correlation of the Lighthill stress tensor in the case 
of a jet.  It has been shown that the inclusion of the near field terms does not add to the 
complexity of the analysis.  The development of these results requires that the observer 
be in the moving reference frame in the case of a wing or a jet in forward flight, or in a 
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rotating reference frame in the propeller case.  These requirements introduce many time 
independent functions in the integrands of the acoustic formulations, resulting in 
considerable simplification of the statistical analysis.  

These analytical results were developed with practical applications in mind.  In 
particular, the goal of the present analytical development is to obtain statistical 
formulations for which the required input data are not unusual or difficult to measure.  It 
is shown here that this can be achieved by the selection of an appropriate frame of 
reference in which the observer position is described.   Although some of the present 
results may appear complicated, they are conceptually simple for numerical work.  One 
of the avenues open to current researchers involves experimenting with analytical 
modeling of the cross-correlation function in acoustic formulations, using measured data 
for guidance.  In addition, experimental data can always be used directly in the present 
analytical results, when they are available.  

As a final remark, note that an analysis similar to that presented herein can be used to 
obtain a cross-correlation function that correlates the surface pressure to the acoustic 
pressure.  The derivation of such a cross-correlation function was presented by Siddon 
[4].  As reported by Siddon, such an analysis can be very useful for the identification of 
noise generating regions.   

The aeroacoustics community owes much to pioneering researchers like Alan Powell, 
who led the rest of us to the importance of identifying and solving significant acoustic 
problems.  We wish him all the best for many years to come.   
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